Nuclear Import of Protein Kinases and Cyclins

Teni Boulikas

Institute of Molecular Medical Sciences, Palo Alto, California 94306

Karyophilic and acidic clusters were found in most nonmembrane serine/threonine protein kinases Abstract whose primary structure was examined. These karyophilic clusters might mediate the anchoring of the kinase molecules to transporter proteins for their regulated nuclear import and might constitute the nuclear localization signals (NLS) of the kinase molecules. In contrast to protein transcription factors that are exclusively nuclear possessing strong karyophilic peptides composed of at least four arginines (R) and lysines (K) within an hexapeptide flanked by proline and glycine helix-breakers, protein kinases often contain one histidine and three K + R residues; this is proposed to specify a weak NLS structure resulting in the nuclear import of a fraction of the total cytoplasmic kinase molecules as well as in their weak retention in the different ionic strength nuclear environment. Putative NLS peptides in protein kinases may also contain hydrophobic or bulky aromatic amino acids proposed to further diminish their capacity to act as strong NLS. Most kinases lacking karyophilic clusters (c-Mos, v-Mos, sea star MAP, and yeast KIN28, SRA1, SRA3, TPK1, TPK2) also lack acidic clusters, which is in contrast to most kinases containing both acidic and karyophilic peptides; this and the presence of R/K clusters in the transporter proteins supports a role of acidic clusters on kinases in nuclear import. Cyclins B lack karyophilic signals and are proposed to be imported into nuclei via their association with Cdc2. © 1996 Wiley-Liss, Inc.

Key words: protein kinases, cyclins, nuclear import, NLS, acidic domains, cell cycle, phosphatases, p34^{cdc2}

INTRODUCTION

Protein kinases regulate enzymatic activities as well as the DNA-binding, transactivating potential, and nuclear import of transcription factors and other kinases; these processes occur in response to extracellular stimuli, emergence of cells from quiescence or the commitment to differentiate, the decision to replicate DNA and to enter mitosis. Kinases might play a notable role in establishing memory pathways through their activation by opening ion-gates in neurojunctions [reviewed by Boulikas, 1995]. Nuclear import of proteins is mediated by short karvophilic peptides that electrostatically anchor the protein molecule to cytoplasmic or nuclear pore transporter proteins [reviewed by Boulikas, 1993]. Indeed, transporter molecules contain clusters of karyophilic but also of acidic amino acids. For example, the yeast NSR1 possesses the motifs DKKRKSEDAEEEEDEESS and $\mathbf{R}\mathbf{x}_{3}\mathbf{R}\mathbf{x}_{4}\mathbf{R}\mathbf{x}_{3}$ $\mathbf{R}\mathbf{x}_{3}\mathbf{R}\mathbf{x}_{4}\mathbf{R}\mathbf{x}_{3}$ $\mathbf{R}\mathbf{x}_{2}\mathbf{R}\mathbf{x}_{3}\mathbf{R}$ [Lee et al.,

1991]; the rat Nopp140 has ten motifs and twelve amino acids each composed entirely of S, D, and E like SSSSEDSSEEE, each followed by a basic oligopeptide; S residues are highly phosphorylated in the functional transporter Nopp140 protein molecule [Meier and Blobel, 1992].

We have proposed that not only karyophilic but also acidic clusters on cytoplasmic proteins to be imported into nuclei mediate their binding to transporter molecules [Boulikas, 1993, 1994]. An examination of the primary structures of a number of transcription factors known to function exclusively in the nucleus has revealed the presence of karyophilic motifs; of the sixteen possible forms of putative NLS structures the $\theta\theta\theta\theta$, $\theta\theta\thetax\theta$, $\theta\thetax\theta\theta$, and $\theta\thetax\thetax\theta$ (where θ is R or K) were predominating, together accounting for about 70% of all karyophilic clusters on transcription factors. These are expected to have their complementary acidic clusters on transporter molecules where E or phosphoserine might complement K and D might complement R [Boulikas, 1994a]. Evidently more transporter protein structures and predictions of the three-dimensional conformation of both transporters and transcription factors are needed to resolve these issues.

Received August 1, 1994; accepted August 8, 1994.

Address reprint requests to Teni Boulikas, Institute of Molecular Medical Sciences, 460 Page Mill Road, Palo Alto, CA 94306.

Are transcription factors phosphorylated already in the cytoplasm by cytoplasmic kinases after their synthesis on polyribosomes and prior to their nuclear import or some protein kinases enter the nucleus and phosphorylate transcription factors in the nucleoplasm? The second possibility is favored since phosphorylations and dephosphorylations of transcription factors occur during the cell cycle and in response to mitogenic signals; the vast majority of transcription factors are strictly nuclear proteins that are supposed to see the cytoplasm only once in their lifetime, during their birth on polyribosomes.

In spite of the possibility that nuclear factors are phosphorylated after their synthesis in the cytoplasm by cytoplasmic kinases to promote their nuclear import, like rNFIL-6 [Metz and Ziff, 1991] or ISGF3 [Fu, 1992; Fu and Zhang, 1993; Shuai et al., 1993], the issue on whether some protein kinases enter the nucleus is important to our comprehension of the involvement of protein phosphorylation in the control of gene expression, DNA replication, cell cycle control, and neoplasia. For several protein kinases it has been established that they shuttle between the nucleus and the cytoplasm like casein kinase II [Lin et al., 1992; Krek et al., 1992]; the catalytic subunit of cAMP-dependent protein kinase II following stimulation of cells with cAMP [Nigg et al., 1985]; the MAP kinases ERK1 and ERK2 following stimulation of cells with growth factors or mitogens [Anderson et al., 1990; Ahn et al., 1991; Chen et al., 1992; Kyriakis et al., 1992]; the RSK or p90^{rsk} after its phosphorylation by MAP kinase [Chen et al., 1992]; and protein kinase C (PKC) after stimulation of cells with the phorbol ester TPA [Leach et al., 1989]. Questions on whether other kinases are imported to the nucleus might be answered by searching for nuclear localization signals (NLS) on protein kinases.

RESULTS

Putative Nuclear Localization Signals on Nonmembrane Protein Kinases

Ambiguities as to whether a kinase enters the nucleus or stays as a strictly cytoplasmic enzyme exist for several kinases. The primary structure of a significant number of protein kinases as well as their function are known; this has allowed the search for karyophilic hexapeptides in their sequences that might function in their nuclear import (Table I) as a possible clue to their intracellular location. Acidic clusters on protein kinases are also given since these might also function in the anchoring of the molecules to karyophilic clusters on transporter proteins (see Introduction). Acidic clusters are arbitrarily defined as four aspartic (D) and glutamic acid (E) residues over a stretch of six amino acids; evidently due to our ignorance of the sites of phosphorylation of most kinases, we cannot predict the contribution of phosphoserines, phosphothreonines, and phosphotyrosines in increasing the acidity of a vicinal D/E-rich cluster.

One type of protein kinase C playing a central role in signal transduction and acting as the principal receptor of the phobol ester TPA translocates to the nucleus from the cell membrane following stimulation of NIH 3T3 cells with TPA [Leach et al., 1989]. TPA treatment seems to reduce the levels of PKC in the cytoplasm with a concomitant increase in membrane and nuclear levels of PKC. However, a number of other similar studies that have examined nuclear localization of PKC gave varying results, raising the interesting possibility that different isoforms of PKC might follow different cell trafficking paths [see Leach et al., 1989, for references]. Type α , β , or γ protein kinase C molecules from human, rat, rabbit, or bovine cells all display three karyophilic peptides conserved in all molecules of the type **HKRCH**, or **HRRCH** around position 71, RSKHKFK or RNKHKFR around position 95, and KHPGKR or KHPAKR around position 577 or 591 (Table I). These signals, although rather weak because of the histidine residue, are flanked by Pro, Glu, Asp, or Gly and are proposed to act for the nuclear import of PKC under special circumstances.

GSK-3 was originally described as a cytoplasmic enzyme involved in glycogen metabolism [Hemmings et al., 1982]. Later, however, GSK-3 was shown to phosphorylate nuclear oncoproteins in vitro such as c-Jun [Boyle et al., 1991] and c-Myb [Woodgett, 1991]. Furthermore, molecular cloning of GSK-3 [Woodgett, 1990] has shown sequence similarity to the *zeste-white*/ shaggy gene of Drosophila coding for a protein involved in neural cell fate determination and known to be a nuclear transcription regulator [Siegfried et al., 1990]. These observations make it likely that GSK-3 is localized also in the nucleus. Our search on GSK-3 α and β rat isoforms encoded by different genes and highly expressed in brain shows the presence of the

Non-membrane		Karyophilic	Acidic		
protein kinase	Species	peptides	stretches	Features	Reference
Protein kinase C (673 aa)	Bovine, human β type	73FVV HKR CH E 96DDP R S KHK F KIH 577T KH PG KRL G	374KKDx4DDD VEx4 EKR 540PFEGEDE D LF	Known to translocate to the nucleus following treatment of cells with mitogens	Parker et al., 1986; Coussens et al., 1986a
Protein kinase C (697 aa)	Bovine, human γ type	71FVVHRRCH EF 95DDPRNKH K FRLH 591TKHPAKRL G	383KKDx4DDD VDx4EKR 552PPFDGED EEE LF		Parker et al., 1986; Coussens et al., 1986a
Protein kinase C (673 aa)	Rabbit type α and β	72FVV HKR CH E 96DDP RSKHK F KIH 577T KH PG KR L G	374KKDx4DDD VEx4 EKR 540PFEGEDE DE LF		Ohno et al., 1987
PKC-I (701 aa)	Rat brain	71FVV HRR CH E 95DDP RNKHK F RLH 594T KH PG KRL G	386KKDx4DDD VDx4 EKR 556PPFDGED EEE LF		Knopf et al., 1986
Protein kinase C (639aa, 75 kDa)	Drosophila	22GENKMKSR LRKG (not con- served) 80SYVVHKRC HEYVT (con- served) 211PDDKDQSK KKTRTIK (not conserved) 614PPFKPKIK HRK MCP (not conserved)	300ADDEQDL 379QDDDVEC 540FDGEDEE EL	14 exons, 20 kb; 3 tran- scripts in adult flies; not expressed in 0–3 h <i>Dro-</i> <i>sophila</i> embryos; the VVHKRCHE motif (or VVHRRCHE) is con- served among all PKC known	Rosenthal et al., 1987
Glycogen syn- thase kinase 3 GSK-3α (483 aa) GSK-3β (420 aa)	Rat brain	148 KK VLQD K- RFKNR- ELQIM R- KLD	None (181SSGEK- KDE, after phosphory- lation at S)	Phosphorylates glycogen synthase, c-Jun, c-Myb; two isoforms encoded by discrete genes; highly expressed in brain; both α and β forms are cyto- solic but also associated with the plasma mem- brane consistent with their role in signal trans- duction from the cell surface	Woodgett, 1990

TABLE I.	Karyophilic an	d Acidic Clusters	s on Non-Membrane	Protein Kinases

Table I continues on next page

Non-membrane protein kinase	Species	Karyophilic peptides	Acidic stretches	Features	Reference
Zw3 zeste-white 3	Drosophila	LQD RRFKNRE LQ	None	Product of the segment polarity gene $zw3$; the protein encoded has 34% homology to cdc2; muta- tions in $zw3$ give embryos that lack most of the ventral denticles, differentiated structures derived from the most anterior region of each segment	Siegfried et al., 1990
Ca ²⁺ /calmodu- lin-de- pendent pro- tein kinase II (CaM kinase II) β subunit (542aa, 60.3 kDa)	Rat brain	289ECLKKFNA RRK L K GAIL	402I EDED A	Composed of nine 50 kDa α -subunits and three 60 kDa β -subunits; both are catalytic; calmodulin- and ATP-binding domains; highly expressed in forebrain neurons, concentrated in postsynaptic densities; acts as a Ca ²⁺ -triggered switch and could be involved in long-lasting changes in synapses	Bennett and Kennedy, 1987
CaM kinase II (478 aa, 54 kDa) α-sub- unit	Rat brain	290LKKFNARR KLKGAILTTM 450EETRVWH RRDGK	338I EDED TKV R	This particular isoform is exclusively expressed in the brain; high enzyme levels in specific brain areas; might be involved in short- and long-term responses to transient stimuli	Lin et al., 1987
cADPK cata- lytic subunit (349 aa, 40.6 kDa)	Bovine (car- diac muscle)	185 GFA KR V- KGRT WTLCG	327 DDYEEEE x ₆ Ex ₄ Ex ₂ EFend	By Edman degradation of protein fragments; medi- ates the action of and is activated by cAMP; con- sists of two regulatory (R) and two catalytic (C) subunits; cAMP releases the C subunit from the inactive R ₂ C ₂ cADPK; two cDNAs were cloned encoding two isoforms of the catalytic subunit of cADPK in mouse	Shoji et al., 1981; Uhler et al., 1986a,b
cADPK (cata- lytic sununit) (350 aa)	Bovine	186GFA KR VKG RTWTLCG <i>Table L</i> cc	338DDYEEEDIR x ₄ Ex ₄ Ex ₂ EFend	cDNA was isolated by screening a bovine pitu- itary cDNA lbrary; 93% sequence similarity to known bovine cADPK; represents the second gene for the catalytic subunit of cADPK	Showers and Maurer, 1986

 TABLE I. (continued)

Non-membrane protein kinase	Species	Karyophilic peptides	Acidic stretches	Features	Reference
cGDPK (670 aa, 76.3 kDa)	Bovine lung	29EEEIQEL KR KLHK CQSVLP 389KIL KKRH - IVDTR	1AcSELEEDE 20ELEKRLS EK EEEIQE 652PEDN DEP PPDD	By protein sequencing; composed of two iden- tical subunits activated in an allosteric manner by binding of cGMP and not by dissociation of catalytic subunit as in cADPK; sequence similar to cADPK	Takio et al., 1984
TPK3 (398 aa) cADPK	S. cerevisiae	117 K TL KKH TI VK	None	cAMP-DPK is a tetrameric protein with two cata- lytic and two regulatory subunits; cAMP acti- vates the kinase by dis- sociating the catalytic subunits from the tet- ramer; all three TPK 1, 2, 3 are catalytic sub- units	Toda et al., 1987
SNF1 (633aa, 72 kDa)	S. cerevisiae	16S ₂ H ₁₃ GHG ₂ 166EYCHRHKI VHRDLKP 495PLVT KKSK TRWHFG	323PEENENN DSKKD _{x4} DND EIDD	Ser/Thr kinase; autophos- phorylated; plays a cen- tral role is carbon catabolite repression in yeast required for expression of glucose- repressible genes; region 60–250 shows high sequence similarity to cAMP-dependent pro- tein kinase (cADPK)	Celenza and Carlson, 1986
Casein kinase II (α-subunit, catalytic) (336aa)	Drosophila melano- gaster	70PV KKKKIKR EI K 269DILQ RHSR KRWERF	None	CKII is composed of α and β summits in a $\alpha_2\beta_2$ 130–150 kDa protein; the α -subunit is the cata- lytic and the β is auto- phosphorylated	Saxena et al., 1987
CKII (β-sub- unit, regula- tory) (215aa)	Drosophila melano- gaster	146PKSSRHH HTDG	24EVDEDYIQD 55DLEP EDE L EDNP		
CKII (β-sub- unit, regula- tory) (209aa, 24.2 kDa)	Bovine (lung)	142P K SS RHH H TDG	20EVDED 51DLEPDEE L ED		Takio et al., 1987
KIN1 (1064 aa, 117 kDa)	S. cerevisiae	108PKQRHRK SLG 129GSMCKV KL AKHRYTNE 506DRKHAKI R NQ 638GNIFRKLS QRRKKTI EQ 773PPLNVAKG RKLHP	433 EFIDDVEE TR 762GS DDD EN	30% aa similarity to bovine cADPK and 27% (KIN1) or 25% (KIN2) aa simi- larity to v-Src within the kinase domain; the cata- lytic domains of KIN1 and KIN2 are near the N-terminus and are structural mosaics with features characteristic of both Tyr and Ser/Thr	Levin et al., 1987

 TABLE I. (continued)

Table I continues on next page

kinases

Non-membrane protein kinase	Species	Karyophilic peptides	Acidic stretches	Features	Reference
KIN2 (1152 aa, 126 kDa)	S. cerevisiae	87ELRQFHRR SLG 111GKVK LVK HRQTKE 217GSLKEHHA RKFARG 807LSVPKGRK LHP	412 EFIDDIED T RR		Levin et al., 1987
STE7 (515 aa)	S. cerevisiae	60FLRRGIKKK LTLD 472PSKDD KFR HWCRKIKSKIK EDKRIKRE		Implicated in the control of the three cell types in yeast; $(a, \alpha, and a/\alpha)$ of which a and α cells are haploid and are special- ized for mating, whereas a/α cells are diploid and are specialized for meiosis and sporulation; with the exception of the mating type locus, <i>MAT</i> , all cells contain the same DNA sequences; <i>STE7</i> gene produces insensi- tivity to cell-division arrest induced by the yeast mating hormone, α -factor	Teague et al., 1986
S6KII α (733aa)	Xenopus	722- Q RRVKK LPST TLend			Jones et al., 1988
S6KIIβ	Xenopus	Q RR V KK LPSIT L end			Jones et al., 1988
S6KII (752 aa)	Chicken	742 Q RRVKK LPST TLend			Alcorta et al., 1989
S6KII (724aa)	Mouse	713Q RRVRK L PSTTLend			Alcorta et al., 1989
CDC2Hs (297aa) p34 ^{cdc2}	Human	16GVVYKGRH KTTG 120FCHS RRVL HRDLKP	33KKIRLESEE EGVP	Isolated by expressing a human cDNA library in <i>S. pombe</i> and selecting for clones that comple- ment a mutation in the <i>cdc2</i> yeast gene; the human CDC2 gene can complement both the inviability of a null allele of <i>S. cerevisiae CDC28</i> and <i>cdc2</i> mutants of <i>S.</i> <i>pombe; CDC2</i> mRNA appears after that of CDK2	Lee and Nurse, 1987; Ninomiya- Tsuji et al., 1991
cdc2 (297aa)	S. pombe	GVVY KARHK L SGR	KKIRL EDESE PG DSEIDE I G EED AIEL	High homology to S. cer- evisiae CDC28	Hindley and Phear, 1984

TABLE I. (continued)

NLS on Kinases

Non-membrane		Karyophilic	Acidic		
protein kinase	Species	peptides	stretches	Features	Reference
CDK2 (cell divi- sion kinase 2) (298 aa)	Human	119HS HR VL H RDLKP	None	The human CDK2 protein has 65% sequence iden- tity to human $p34^{cdc2}$ and 89% sequence iden- tity to Xenopus Eg1 kinase; human CDK2 was able to complement the inviability of a null allele of S. cerevisiae CDC28 but not cdc2 mutants in S. pombe. CDK2 mRNA appears in late G1/early S	Ninomiya- Tsuji et al., 1991; Tsai et al., 1991
Eg1 (297aa)	Xenopus	109FCHS HR VL HR DLKP	254PLDEDGRD LL	Cdk2-related	Paris et al., 1991
CDC28 (298a)	S. cerevisiae	125GIAYC HSH RILHRDLK P	37 KKIRLESED EGVP	The homolog of <i>S. pombe</i> Cdc2	Lörincz and Reed, 1984
cdk3 (305aa)	Human	119 H SHRVIHR DL K P	None (287 SSPEPSPx ₈ RF RH. C-ter- minus)		Meyerson et al., 1992
PSSALRE (291 aa)	Human	56 K EL KHK NIV R	33KRVRLDDD DEGVPSS	cdc2-related kinase	Meyerson et al., 1992
PCTAIRE-1 (496 aa)	Human	1MDRMKKIKR Q (N-terminus) 141DKPLSRRL RRV		cdc2-related kinase	Meyerson et al., 1992
PCTAIRE-2 (523 aa)	Human	1MKKFKRR 129RNRIHRR IS 172SRRSRRA S 304HRRK VLH R 512GHGKN RR QSMLF end		cdc2 related kinase	Meyerson et al., 1992
PCTAIRE-3 (380 aa)	Human	163HTRKILHR 369PGRGK NR BOSIF end		cdc2 related kinase	Meyerson et al., 1992
KKIALRE (358 aa)	Human	69EVFRRKRR LH 302DKPTRK TL RKSRKHH	243 DPEDME P L E L	cdc2-related kinase	Meyerson et al., 1992
nim1 ⁺ gene product (new inducer of mitosis); pro- tein kinase (370 aa)	S. pombe	1MVKRHKNT 87DGELFHYIR KHGP 114DAVAHCH RFRF RHRD 295KKSSSKK VVRR LQQRDD	309R DDNDE K		Russel and Nurse, 1987a
Wee1 ⁺ gene product (877aa)	S. pombe	194PAQ KLRK KN NFD 388 K QHRPRK NTNFTPLPP 592KYAV KKL K V K FSGP	538MEEEADV	The Wee1 ⁺ gene functions as a dose-dependent inhibitor that delays the initiation of mitosis until the yeast cell has attained a certain size; Wee1 has a protein kinase consensus prob- ably regulating cdc2 kinase	Russel and Nurse, 1987a

 TABLE I. (continued)

Table I continues on next page

			E I. (continueu)		
Non-membrane protein kinase	Species	Karyophilic peptides	Acidic stretches	Features	Reference
CDC7 (497 aa)	S. cerevisiae	266PNET RRIK RANRAG	480DGESTDE DDVVSSSE AD LLDKDVLLISE end	Required for mitotic but not meiotic DNA replica- tion presumably to phos- phorylate specific repli- cation protein factors; implicated in DNA repair and meiotic recombination; some homology with CDC28 and oncogene protein kinases but differs in a large region within the phosphorylation receptor domain	Patterson et al., 1986
ERK1 (MAP kinase) (367 aa; 42 kDa)	Rat	48YD H VRKTR VAIKK	FDMELDDL PKERLKE x4D	Known to translocate to the nucleus following their activation by phos- phorylation at T-190, and Y-192 (T-183, Y-185 in ERK2)	Boulton et al., 1990
FUS3 (353aa)	S. cerevisiae	591L KH F KH E		MAP-(ERK1)-related	Boulton et al., 1990
KSS1 (368 aa)	S. cerevisiae	252QI KSKR AK EY	343RP EEEEE VP	MAP-(ERK1)-related	Boulton et al., 1990
SWI6 (803aa, 90kDa)	S. cerevisiae	ELV KH LV KH G SN G KAKKIR SQLL	EFEEPETDQD EEDP EEEEESFRE ESKK SSEDPQDIDT DE MQD	Activator of CACGA-box with sequence similarity to cdc10; required at START of cell cycle	Breeden and Nasmyth, 1987
cdc10	S. pombe	EQRLKRHRID VSDED	ŭ		Breeden and Nasmyth, 1987
CTD kinase (528 aa) 58 kDa subunit (catalytic)	S. cerevisiae	37PPKRIRTD (suggested by the authors) 492KLARKQK R P	N ₈ DDDD K (N-terminus)	Consists of 3 subunits of 58, 38, and 32 kDa; dis- ruption of the 58 kDa gene gives cells that lack CTD kinase, grow slowly, are cold sensi- tive, but have different phosphorylated forms of RNA pol II	Lee and Greenleaf, 1991
Phosphorylase kinase (cata- lytic subunit) (386aa)	Rabbit (skel- etal muscle)	29GVSSVV RR CI HK P	None		Reimann et al., 1984
Myosin light chain kinase (MLCK) (669 aa)	Chicken giz- zard	489KKYMA RR KWQKTGHAV	176EKQEEEL KEEEAELSDD EGKETE 304DED FELTE RE 431DFDD EAF DEISDDAKD 606D YDEE 653EGEGEGE GEEDE ₆ end	Ca ²⁺ /calmodulin-acti- vated; phosphorylated by cADPK; first described as responsible for the phosphorylation of a specific class of myosin light chains; required for initiation of contraction in smooth muscle	Guerriero et al., 1986

 TABLE I. (continued)

Table I continues on next page

68

Non-membrane protein kinase	Species	Karyophilic peptides	Acidic stretches	Features	Reference
Myosin light chain kinase (partial 368 carboxy-ter- minal aa sequence)	Rabbit (skel- etal muscle)	314PWLNNLAE KA KR CN RR LK SQ333 334ILLKKYLM- KRRWKK N- FIAVS	260G DDDTE 275WYF DEE TF E	By protein sequencing	Takio et al., 1985
Phosphorylase kinase (PhK) (catalytic γ subunit) (389 aa)	Mouse (muscle)	28GVSSVV RR CI HK P	384AEEEDFend	Glycogenolytic regulatory enzyme; undergoes com- plex regulation; com- posed of 16 subunits containing equimolar ratios of α , β , γ , and δ subunits; high levels in skeletal muscle; iso- forms in cardiac muscle and liver; cDNA probe does not hybridize to X chromosome in mice and is thus distinct from the mutant recessive PhK deficiency that results in glycogen storage disease	Chamberlain et al., 1987

TABLE I. (continued)

DKRFKNRE signal in both isoforms; because of the phenylalanine (F) residue might be a weak NLS.

Ca²⁺/calmodulin-dependent kinases I and II (CaM kinases) are bulky enzymes especially expressed in brain consisting of α and β subunits both possessing catalytic kinase activity; these enzymes are partly bound to membranes or cytoskeletal structures and partly soluble [reviewed by Edelman et al., 1987]; yet CaM kinases phosphorylate the transcription factor CREB [Sheng et al., 1990, 1991] and mediate the effect of Ca²⁺ influx to the nucleus [Colbran et al., 1989; Sheng et al., 1991]. The rat enzyme has the **KK**FNA**RRK**L**K**G signal (Table I) which, although flanked by hydrophobic amino acids, is among the few found in this study not to contain histidine; furthermore, this signal is flanked to its C-side by glycine that makes it a relatively strong NLS.

cGDPK and cADPK are cytoplasmic enzymes but phosphorylate histone H2B [Glass and Krebs, 1979; Martinage et al., 1980], whereas cADPK phosphorylates SRF [Janknecht et al., 1992], c-Fos [Tratner et al., 1992], and the transcription factor ADR-1 in yeast [Cherry et al., 1989]. The phosphorylation of the transcription factor rNFIL-6 (related to c/EBP) by cADPK is known to occur in the cytosol and promotes the nuclear import of rNFIL-6 [Metz and Ziff, 1991]. Is the phosphorylation of the other nuclear proteins executed by cADPK or cGDPK in the cytosol or do these kinases enter the nucleus? Initial studies on the localization of these two kinases showed them to be cytosolic [reviewed by Edelman et al., 1987]; however, there is substantial evidence to suggest that these kinases spend some of their time in the nuclear compartment [Cherry et al., 1989; Janknecht et al., 1992]. cADPK is composed of catalytic and regulatory subunits; cAMP binds to the regulatory subunit and activates the dissociation of the catalytic subunit. Nigg and coworkers [1985] have demonstrated that cAMP elevation by treatment of cells with forskolin causes dissociation of the catalytic subunit of cADPK from the Golgi complex and its translocation to the nucleus; during the experiment the regulatory subunit remained associated with the Golgi; the catalytic subunit returned to the Golgi after drug withdrawal. Table I shows that the catalytic subunit of bovine cADPK possesses the karyophilic peptide **KRVKGR** that could specify nuclear import.

The distribution of casein kinase I (CKI) in rat liver was found to be cytosol (72%), microsomes (18%), mitochondria (10%), and nuclei

(1%); CKII in rat liver was found to be predominantly cytosolic (90%), whereas the remaining activity was divided among the nuclear, mitochondrial, and microsomal fractions [reviewed by Edelman et al., 1987]. CKII has an $\alpha_2\beta_2$ structure of 130 kDa with the α subunit containing the catalytic site. The catalytic subunit in Drosophila has the strong putative NLS KKKKIKR and a second signal RHSRKR proposed here to specify nuclear import; the best karyophilic peptide, however, I could find on both the bovine and Drosophila regulatory subunits of CKII is the KSSRHHH, which looks like an extremely weak signal; thus the regulatory subunit of the Drosophila CKII might either depend on its association with the catalytic subunit for its nuclear import or might function only in the cytoplasm. CKII modifies a significant number of transcription modulators after its activation by MAP kinases, including c-Jun, c-Fos, c-Myb, p53, T antigen, E7 of human papilloma virus, and SRF [reviewed by Hunter and Karin 1992; Boulikas, 1995]. This is consistent with findings that CKII shuttles between the nucleus and the cytoplasm [Lin et al., 1992; Krek et al., 1992].

The Cdc2 (p34^{cdc2}) and the Cdk family of Ser/ Thr kinases associate with cyclins B and G1 cyclins (A, D1, E), respectively, to control the G2/Mand G1/S checkpoints of the cell cycle, respectively, [reviewed by Boulikas, 1995]; these kinases are expected to spend most of their time in the nucleus. All Cdc/Cdk kinases examined contain the rather weak histidine-containing NLS as, for example, YKGRHKT (human CDC2Hs), KARHKL (S. pombe Cdc2), HRVLHR (human CDK2 and Xenopus Eg1), or KELKHK (human PSSALRE). However, some of the strongest putative NLS found are within this family: RRKRR in the KKIALRE molecule (the temporary name is derived from diversions in a conserved motif), KKIKR and RRLRR in PCTAIRE-1, and KKFKRR and RRSRR in PICTAIRE-2 (Table I). On the other hand, the related molecule PLSTIRE lacks four positivelycharged amino acids over a stretch of six (Table II).

Karyophilic and Acidic Clusters on Other Kinases, Cyclins, and Phosphatases

Putative NLS on cyclins are shown in Table III. Karyophilic signals in tyrosine kinases without a transmembrane domain are shown in Table IV and those with a transmembrane domain are shown in Table V. Finally, Table VI shows putative NLS on some phosphatases.

CONCLUSIONS AND DISCUSSION Histidine in Karyophilic Clusters

Nonmembrane protein kinases supposedly free to follow different subcellular trafficking paths very frequently use one histidine out of the four positively charged amino acids in the karyophilic hexapeptide (Table I); this is in contrast to transcription factors that use arginines and lysines [see Boulikas, 1994a]. The conclusion that most protein kinases that function in both cytoplasmic and nuclear compartments possess a putative NLS with a histidine residue within the karyophilic amino acid tetrad of the hexapeptide is supported by the fact that protein kinase C has three karyophilic signals, all three containing one or two histidines but never four arginies plus lysines: **HKRCH**, **RSKHK**, and **KH**PG**KR**. Some exceptions to this rule include signals on CaM kinase and CKII (see above), the Cdc2related human PCTAIRE-1 (KKIKR and RRLRR), PCTAIRE-2 (KKFKRR and RRSRR), KKIALRE (RRKRR), and myosin light chain kinase (**KRCNRR** and **RRWKK**). Since histidines are protonated to a much lesser extent than lysines and arginines at physiological pH and since their protonation changes depending on the three-dimensional protein microenvironment that harbors histidine residues, it is proposed that histidine-containing NLS found in kinases are weak NLS giving to the protein the characteristic of being present in both cytoplasmic and nuclear compartments. However, protein kinases that need to be constitutively present in nuclei might contain at least one strong NLS composed exclusively of K and R in a helix turn or otherwise exposed part of the protein in addition to containing proper acidic clusters as well as to interact with nuclear components resulting in a strong nuclear retention.

Number of Karyophilic Clusters per Protein Molecule

Most kinases possess a single karyophilic (putative NLS) hexapeptide (Table I); this is in contrast to protein transcription factors that possess a second and occasionally a third or fourth karyophilic peptide [see Boulikas, 1994a]. The higher the number of NLS on a protein, the more readily this protein is transported to the nucleus [reviewed by Boulikas, 1993]. The presence of a single karyophilic hexapeptide containing more often one histidine and three arginines/ lysines on most protein kinases argues for their

Non-membrane protein kinase	Species	Karyophilic peptides	Acidic stretches	Features	Reference
v-Mos (374 aa)	Mouse sar- coma virus MuSV12 7	None	None	Ser/Thr kinase; v-mos is the Moloney murine sarcoma virus (MSV) transforming gene; only a few base sub- stitutions with its cellular homolog; however, c-mos (human) was unable to transform mouse cells; considerable homology with src of avian sarcoma virus	van Beveren et al., 1981a,b
c-Mos	Rat	None	None	Not expressed in normal mouse tissues; sequences with high mutation rates by comparison of human, mouse, and rat cDNA	van der Hoorn and Firzlaff, 1984
c-Mos (346aa)	Human	None	None		van Beveren et al., 1981 a.b;
c-Mos	Mouse	None	None		Watson et
PLSTIRE (326	Human	None (FRRKPL- FRGSEDVD)	None	cdc2-related kinase	Meyerson et
KIN28 (306aa)	S. cerevisiae	None (265PPPSR DELRKRF)		Related to CDC28 and Src, Erb, Abl, EGFR, as well as to Ser/Thr kinases; essen- tial for cell proliferation; unable to complement cdc28 mutations	Simon et al., 1986
SRA1 (cADPK regulatory subunit) SRA3 (cADPK catalytic sub- unit)	S. cerevisiae S. cerevisiae	None $(38\mathbf{K}\mathbf{R}\mathbf{x}_4\mathbf{R}\mathbf{x}_3$ - $\mathbf{K}A\mathbf{R}\mathbf{x}_4$ $\mathbf{x}_4\mathbf{K}A\mathbf{K})$ None $(\mathbf{K}\mathbf{x}_2\mathbf{K}\mathbf{K}\mathbf{x}_4\mathbf{R}L\mathbf{K}\mathbf{x}$ $_3\mathbf{H}\mathbf{x}_4\mathbf{R})$		SRA1 gene is not essential; its deletion results in reduction in glycogen accu- mulation, temperature sensitivity, inability to grow on galactose; cAMP controls the meiotic versus mitotic decision in yeast	Cannon and Tatchell, 1987
MAP Myelin basic protein (MBP) kinase pp44 ^{mpk}	Sea star oocyte	None	None	Ser/Thr kinase; functions for meiotic maturation; p42 in Xenopus; related to MAP kinases of mammals; acti- vated by phosphorylation at Tyr	Posada et al., 1991
MAP p42 ^{mpk} (361 aa)	Xenopus ovary cDNA library	None	333KF E M- ELDDLP	Ser/Thr kinase related to sea star pp44 ^{mpk} and mamma- lian MAP kinase ERK1	Posada et al., 1991
TPK2	S. cerevisiae	None	None	cADPK-related (catalytic	Toda et al.,
TPK1	S. cerevisiae	None (RVHLIRSRH)	None	cADPK-related (catalytic subunit)	Toda et al., 1987
PK-25 cdc25-sup- pressing pro- tein kinase (397 aa)	S. cerevisiae	None (82HLIRSRHN	None (G R YY)	cAMP-independent protein kinase involved in the con- trol of the START point of the cell cycle; 48% sequence similarity to the mammalian cADPK; 27–31% sequence simi- larity to CDC28	Lisziewicz et al., 1986

TABLE II. Nonmembrane Ser/Thr Kinases Lacking Four Karyophilic Amino Acids Over a Stretch of Six Amino Acids

Cyclin	Species	Karyophilic peptides	Acidic stretches	Features	Reference
Cyclin A	Human	65Q R P K T RR V AP	104V DE A EKE		Wang et al., 1990; Koff et al 1991
Cyclin B	Human	None	PEPEPEPE PY KEEK DVDAED	Mitotic cyclin; suggested here to enter the nucleus in association with Cdc2	Pines and Hunter, 1989; Koff et al., 1991
Cyclin E	Human	SA R SRKRKAN V SSKLKH FRG DKARKKAM	D KEDDDR	G1 cyclin; in association with cdk2 controls the G1/S transition	Koff et al., 1991
Cyclin B1 (398a; 44.6 kDa)	Xenopus	None	DVDADDD	Cutting the mRNA of cyclin B1 and B2 with antisense oligos blocks entry into mitosis	Minshull et al., 1989
Cyclin B2	Xenopus	None	EDIDADD		Minshull et
Cyclin A (422aa)	Clam S. solid- issima	None	136 D LP EEE K P 153P EYEEDIY 195 E VS EED K		al., 1989 Swenson et al., 1986; Minshull et al., 1989
cdc13 (cyclin)	S. pombe	P KKRH ALD PAS KKRR QP P KK L KK DVDE R	DWDDLDAED GGYDEEE IL GDDADEDY HDN KDEEW		Minshull et al., 1989
Cyclin D1 (295aa)	Human	None (169PEAEEN- KQIIRKH)	272 E₉VD	G1 cyclin	Xiong et al., 1991
Cyclin A (491 aa)	Drosophila	212RESEKKH RPKPRYMRR	None	Accumulates in the cyto- plasm of cellularized fly embryos during inter- phase, relocates to the nuclear region early in prophase, completely degreaded within meta- phase; expressed in dividing cells throughout development	Lehner and O'Farrel, 1989
CLN1 (546aa)	S. cerevisiae	None (87 R x ₇ Hx ₂ Rx ₃ R x ₃ KRx ₃ Kx ₃ K)	265M DEDEE L	Related to cyclins; muta- tion in <i>CLN2</i> gene advances the G1 to S transition and impairs	Hadwiger et al., 1989
CLN2 (545aa)	S. cerevisiae	None (89 R x ₇ H x ₂ R x ₃ R x ₃ KR x ₃ R x ₃ K)	250N EEEEEE D LK	the ability of yeast cells to arrest in G1 in response to external sig- nals	
Cyclin	Sea urchin A. punctu- lata	GS KK VV KK D	EDIDKDD G		Minshull et al., 1989

TABLE III.	Karyophilic and Acidic Clus	sters on Cyclins

role in both cytoplasmic and nuclear compartments. Exceptionally the human PCTAIRE-2 (Cdc2-related) and the yeast KIN1 contain five positively charged clusters; the yeast KIN2 and Nim1 contain four; the mammalian PKC and yeast SNF1, SWI6, and Wee1 contain three; whereas the a-subunit of rat CaMK, the cG-DPK, the catalytic subunit of *Drosophila* CKII, the yeast STE7, the human CDC2Hs and its related PCTAIRE-1, 3, and KKIALRE contain two (Table I).

Protein Kinase Import After its Phosphorylation

The cell might have invented ways of translocating a protein kinase to the nucleus at a certain stage or in a narrow window during the cell cycle or after cell stimulation. Evidently, nuclear import of kinases could be affected a) via exposure of a cryptic kinase NLS by phosphorylation or b) by stimulation of association of the kinase with a protein in the cytoplasm possessing a NLS, then phosphorylation/dephosphorylation reactions on their transactivating interfaces will be followed by nuclear import of the complex. For example, TPA treatment causes translocation of PKC α to the nuclear envelope [Leach et al., 1989].

Phosphorylation of a kinase at a specific site is proposed to either increase the acidity of a peptide augmenting the anchoring of the kinase molecule to the transporter protein or to expose by a change in protein conformation a cryptic karyophilic NLS. This might explain activation and nuclear import of cADPK, MAPK, PKC, RSK, and CKII immediately following activation of the cells with extracellular stimuli (growth factors, phorbol esters) or by an increase in the intracellular concentration of Ca^{2+} or cAMP.

Hydrophobic and Bulky Amino Acids in the Vicinity of Karyophilic Peptides

Putative nuclear localization signals in some protein kinases, in addition to containing histidine, may also be embedded in an immediate short hydrophobic (L,I,V,C,M) or bulky aromatic (F,Y,W) amino acid environment; these environments add a strong negative factor to the capacity of the karyophilic peptide to act as a NLS [Boulikas, 1993, 1994a]; however, such short domains are broken by acidic (D,E), basic (K,R), or amino acids with uncharged small groups (A,G,S,T,P), especially including the α -he-

lix breakers G and P. For example, the nim1+gene product of S. pombe has the putative signal KKSSSKKVVRRLQQRDD (Table I). Such signals are very unusual as unique signals on protein transcription factors [Boulikas, 1994a]. Also a mixture of charged and hydrophobic amino acids are signals for the mitochondrial import of proteins [see Boulikas, 1993]. It is noteworthy that an examination of the subcellular distribution of CKI showed it to be localized in mitochondria (10% of total), as well as in cytoplasmic, endomembrane, and nuclear compartments [reviewed by Edelman et al., 1987]; this might be true for other kinase molecules and karyophilic signals with hydrophobic amino acids described here (Table I) may specify mitochondrial import of the kinase molecule.

Nuclear Import of Cyclins

Several cyclins lack karyophilic signals and are proposed to depend on their association with other nuclear proteins in the cytoplasm for their nuclear import. These include cyclins B and D1 in humans, B1 and B2 in *Xenopus*, cyclin A in the clam S. solidissima, and CLN1 and CLN2 in S. cerevisiae (Table III). Human cyclin B might enter the nucleus in association with CDC2. Cyclins are indeed known to form strong complexes with Cdc2 or Cdks in a cell cycle-dependent manner. The import of a cyclin in association with its proper kinase might have been invented by the cell to ensure that precise stoichiometric amounts of some cyclins and kinases are present in nuclei. In addition cyclins may associate with transcription factors or other nuclear proteins and such an association already in the cytoplasm might be of physiological importance. For example, cyclin A associates with E2F regulating the DHFR, c-myc, and RB genes to control the onset and progression of DNA replication [Mudry] et al., 1991; reviewed by Boulikas, 1994b].

NLS-Less Protein Kinases

Few kinases lack putative NLS and are proposed to never enter nuclei or to do so in tight association in the cytoplasm with proteins possessing a NLS. These include the *Xenopus* $p42^{mpk}$ (related to mammalian ERK1), the sea star MAP kinase, c-Mos, v-Mos; the human Cdc2-related PLSTIRE; the yeast KIN28, TPK1 and 2, and PK-25; and the *S. cerevisiae* SRA1 and SRA3 related to mammalian cADPK regulatory and

Protein kinase	Species	Karyophilic peptides	Acidic stretches	Features	Reference
c-Abl (1130 aa)	Human	601SALI KKKK KTAPTPPKR 868PAEES R VR RHKHSSESPG	KEDTME VEEF KKNEEAA DEV FKD	Tyr kinase associating with DNA; neither transmembrane nor signal peptide regions; N-terminal M is cleaved leaving a G that might be myristoylated for membrane-association; all motifs are conserved between human and mouse c-Abl; c-abl is the prototype of v-abl of Abelson leukemia virus; c-abl is translocated from chromosome 9 to 22 next to the bcr gene (Philadelphia chromo- some) in chronic myeloid leukemias	Shtivelman et al., 1986; Koch et al., 1991
Tck p56 ^{(ck} (509 aa)	Mouse	176GVV KHYK I R NLD	9PEDDWMENI DVCE 232PWWEDEW EVPRE 478KE RPEDR PTFDx ₆ DD	myeloid leukemias Overexpression in thy- momas is caused by insertion of the M-MuLV about 200 bp upstream from the 5' end of the transcription initiation site of c-tck gene; p56 primary structure is similar to $p60^{c-src}$, $p90^{v-ycs}$, $p70^{v-fgr}$; does not possess a transmembrane domain; its association with the membrane seems to depend on the attachment of a myri- styl moiety to the α -amino group of Gly-2	Voronova and Sefton, 1986
Met (454aa)	Human	256GMKYLASK KFVHRDLAAR	49KEELEAEK RD	Tyrosine kinase present in MNNG-transformed human cells; <i>met</i> can transform NIH3T3 mouse fibroblasts; absence of transmem- brane domain; believed to have arisen by fusion of the Tyr-kinase domain of a transmem- brane protein with a relative of laminin B1 in a mechanism reminis- cent of <i>trk</i> and v- <i>fgr</i>	Chan et al., 1987

TABLE IV. Tyr Kinases Without a Transmembrane Domain

Table IV continues on next page

Protein kinase	Species	Karyophilic peptides	Acidic stretches	Features	Reference
c-Yes (543aa)	Human	206GDNV KHYK IRKLDNGG 320EAQI MKKL RHDKLVPLY	None	Neither membrane-span- ning region nor ligand- binding domain; resembles p60 ^{c-src}	Sukegawa et al., 1987
c-Lyn (512 aa)	Human	79PDDLSF KKH E K M K VLEE	None	Tyr kinase similar to p56 ^{lck} , v-Yes, v-Fgr, v-Src; no transmem- brane domain	Yamanashi et al., 1987
v-Raf (318 aa) Pks (248 aa) v-Mht/v-Mil (317 aa)		63EMQVL RK T RH VNILP	None	Ser/Thr kinases; Pks is associated with the cell membrane by myristila- tion; transformation by Raf protein, unlike v-Src, does not require myristilation	Mark and Rapp, 1984; Mark et al., 1986; Bonner et al., 1986
A-Raf (606 aa)	Murine	286DD KKKVK NLG 354EMQVL RK T RH VNILL	None	The first putative NLS motif is characteristic of A-Raf; expressed espe- cially in epididymis fol- lowed by intestine; a gag/A-raf fusion gene causes transformation in vitro and induces tumors in newborn mice	Huleihel et al., 1986; Beck et al., 1987
c-Raf-1 (648 aa)	Human (fetal liver cDNA library)	100RLLHEHKG KKARLD 393EVAVLRKT RHVNILLFMG	None	Eleven exons homologous to <i>mil</i> , nine of which are also homologous to v-raf	Bonner et al., 1986
Jak1 (1142aa, 132 kDa)	Human	113SVWRHSP KKQKNGYEKK KIP 313RHKPNVV SVEKE KNKLK RKKLENKDKK DEEKNKIREE 856PTHFEKRF LKRIRD	591M D YK DDE GTS EE KK	Tyrosine kinase activated by IFN- γ to phosphory- late the STAT91 sub- unit of ISGF3 α at Tyr-701 causing its translocation to the nucleus	Velazquez et al., 1992; Shuai et al., 1993
Tyk2 IFN-Tyk (1187 aa, 134 kDa)	Human	216P R STF RRH I RQH S 888GPTTF HKR YL KKIR DLG	614G D P EE GK M DDED PLVP	Links the IFNα/β receptor to the cyto- plasmic ISGF3 acti- vating IFN-responsive genes	Velazquez et al., 1992
Src p60 ^{c-src} (533aa)	Chicken	196GLNV KHYK I RKL D 313VM KKLRH EK	None	p 60^{c-src} is myristylated through an amide bond to the α -amino group of Gly-2, after cleavage of Met-1 in the mature protein; this modifica- tion is crucial for its interaction with cellular membranes	Takeya and Hanafusa, 1983

TABLE IV. (continued)

Non-membrane protein kinase	Species	Karyophilic peptides	Acidic stretches	Features	Reference
Insulin receptor (1355aa, 1382aa pre- cursor)	Human	261DLHHKCK NSRR 730PSRK RRS LG 1124NAKKFVH R D	149KDDNEEC GD 1280EE NKAPE SEELEMEFED ME	Contains signal N-terminal hydrophobic peptide for entering ER; a trans- membrane domain; insulin stimulates glu- cose uptake and acts as a growth and maintenance factor for vertabrate cells in culture	Ullrich et al., 1985; Ebina et al., 1985
c-Kit (976 aa)	Human	680NFL RRKR D SF 737D KRR SV R I G	749ERDx ₆ EDD EL ALDLED	Product of c- <i>kit</i> proto-onco- gene; cell surface receptor for an unidenti- fied ligand tyrosine kinase	Yarden et al., 1987
EGFR (1210 aa) v-erbB	Human (pla- centa)	297GVRKCKK CEG (extracellu- lar domain) 640IGLFMRRR HIVRKRTVRR- LL (intracellular, flanking the transmem- brane domain) 805EDRRLVH RDLAA (intra- cellular)	290DSYEMEE DG 979 DEEDMDD VVDADE 1055 EDSIDD	23aa-transmembrane domain; EGFR gene is amplified and rearranged in A431 carcinoma cells generating a truncated mRNA which encodes only the extracellular EGF-binding domain	Ullrich et al., 1984
c-Ros-1 (471 aa)	Human	90TFVWHRRL KNQKSA (intra- cellular, imme- diately after the transmem- brane domain)	None	Transmembrane domain and Tyr kinase domains are present; absence of signal peptide; ten exons, 26 kb; UR2 sarcoma virus of chickens encodes a fusion p68gag-ros protein; v-ros of UR2 is derived from c-ros of chickens	Matsushime et al., 1986
c-Fms; CSF-1R (972aa)	Human	703HLE KK YV R RDSG (intracel- lular domain)	936GS4ELEEE S3E (near C-terminus)	Has a signal peptide for membrane translocation and a transmembrane domain; in FeSV v-fms is in fusion with gag pro- duced by homologous recombination that trun- cated the gag gene and fused it in-frame with the pre-c-fms sequence	Coussens et al., 1986b

TABLE V. Putative NLS on Transmembrane Tyrosine Kinases

Table V continues on next page

catalytic subunits, respectively (Table II). Furthermore, all of these kinases except *Xenopus* MAP also lack acidic clusters (Table II) proposed to aid the anchoring of the protein to the transporter molecule. This is in contrast to the nonmembrane protein kinases containing putative NLS most of which also contain acidic clusters (Table I).

The strictly cytoplasmic function of some protein kinases with a specificity for phosphorylating a certain type of peptide motif is expected to be of physiological significance by maintaining

Protein kinase	Species	Karyophilic peptides	Acidic stretches	Features	Reference
c-Fes/c-Fps (825aa, 93.4 kDa)	Human	196AQLHHQH HHQ 818QSIRK RHR end	None	Malignant oncogene; the feline <i>c-fes</i> proto-onco- gene has been captured by feline sarcoma virus (FeSV); the Fujinami sar- coma virus (FSV) of chickens has acquired similar sequences from the avian counterpart <i>c-fps</i> ; both <i>v-fps</i> and <i>v-fes</i> encode for Tyr-kinases; the human <i>c-fes/c-fps</i> has exons 2–9 homologous to <i>v-fps</i> of FSV, exon 1 cor- responds to exon 2 of chicken <i>v-fps</i> ; Alu repeats represent 70% of intron between exons 18 and 19; may function in myeloid cell differentiation; asso- ciated with a 150 kDa cellular Ser/Thr kinase	Coussens et al., 1986b
Ret (805aa)	Human	121VCDRSRE HRGHSVLP 150QLDHLKRV KD 159DLKKR RR ANG	None	Fusion protein; the <i>ret</i> transforming gene encompasses ~ 34 kb of DNA and is generated by recombination of two ~ 17 DNA fragments which are unlinked in both normal human cells and T-cell lymphomas; the recombination takes place during secondary transfection of NIH3T3 cells with T-cell lym- phoma DNA; all three karyophilic motifs are in the extracellular part of the transmembrane pro-	Takahashi and Cooper, 1987
Met (1408aa)	Human	3001LTEKRKK RSTKKEV (extracellular domain) 970FLWLKKR KQIKDL (imme- diately fol- lowing the membrane- spanning seg- ment)	1390EDNADD EVD	Contains a 24aa signal pep- tide, and a 23aa mem- brane-spanning segment; the 435aa intracellular domain has sequence similarity with the SRC family of Tyr kinases, insulin receptor, and v-Abl	Park et al., 1987

 TABLE V. (continued)

Protein phosphatase	Species	Karyophilic peptides	Acidic stretches	Features	Reference
PP2C (382 aa, 42.4kDa)	Rat (kidney)	149GLLC RNRK VHFFTQD HK P	218 EPEVHDIE RS EEDD	Cytosolic, distantly related to yeast adenylate cyclase; not related to PP1 and to PP2A	Tamura et al., 1989
PPZ (348 aa)	Rabbit (brain cDNA library)	10P KK F KK PIDI D	None	Ser/Thr phosphatase	Cohen et al., 1990
PPY (314 aa)	Drosophila	134DEI KRRH T VKLW	None	Related to PP1 (66% iden- tity in catalytic domain) but different than <i>Dro-</i> <i>sophila</i> PP1; all three isoforms of <i>Dr</i> . PP1 are 94% identical to mamma- lian PP1	Cohen et al., 1990
PP1α (330 aa)	Drosophila; mammals	None (314PGG R- PITP RRN- SA K AKKend)	None	Perhaps the most evolu- tionarily conserved enzyme; 94% identity between <i>Drosophila</i> and mammalian enzymes	Cohen et al., 1990
PPX (307aa)	Rabbit (liver cDNA library)	None	None	Related to but distinct from PP2A	Cohen et al., 1990
ΡΡ2Αα	Rabbit	None (104 KVRYRE- RITILRGNR ESR)	None	Involved in chromosome separation in mitosis; suggested here to gain access to chromatin after dissolution of the nuclear envelope or via associa- tion with other proteins that possess NLS	Cohen et al., 1990

TABLE VI. Putative NLS on Protein Phosphatases

such available peptides in the nuclear compartment nonphosphorylated.

Transmembrane Tyrosine Kinases

The transmembrane tyrosine kinases, most of which are growth factor receptors, may possess putative NLS in their primary structure (Table V); in their case the signal N-terminal hydrophobic peptide directing them to the lumen of the endoplasmic reticulum and then from the Golgi to the cell membrane is a stronger determinant than their NLS-like peptides for their subcellular localization as was first proposed by Boulikas [1994b].

Are Src and Raf Proteins Imported Into Nuclei?

The Raf family of serine/threonine kinases comprises c-Raf-1, v-Raf, Pks, v-Mht, and A-Raf, these proteins are related to the Src family of tyrosine kinases. Their association with the cell membrane like that of the Src family of tyrosine kinases depends on their myristilation. However, unlike v-Src, which requires myristilation for transforming activity, transformation by Raf protein does not [for references see Huleihel et al., 1986]. Raf proteins seem to be cytosolic; v-Raf is expressed by the 3611 murine sarcoma virus (3611-MSV) in the form of two differentially modified Gag-fusion proteins, a myristilated/phosphorylated p79 and a glycosylated p90 [see Huleihel et al., 1986].

All Raf proteins possess the weak **RKTRH** NLS embedded in a 15aa hydrophobic segment; however, A-Raf possesses the DD**KKKVK**NLG motif and c-Raf-1 the **HK**G**KK** motif in addition to the **RKTRH** which is conserved in all Raf members. We suggest that A-Raf enters the nuclei and that the other Raf members may do so to a lesser extent. It is interesting to note that the Src family of kinases, which comprises members with either Tyr or Ser/Thr kinase activity, do not possess a transmembrane domain and that their association with the cell membrane depends on their myristilation; we suggest that a population of nonmyristilated kinase molecules may shuttle between the cytoplasm and the nucleoplasm.

Inert Karyophilic Signals

The fact that most cytoplasmic protein kinases possess a NLS-like karyophilic signal does not necessarily mean that they have to spend some time in the nucleus. This signal, especially on those molecules containing the bulky amino acids W, F, or Y in the hexad or those embedded in a short hydrophobic segment of the protein, may be unavailable for binding to the transporter molecules; one or more phosphorylations at S, T, or Y residues vicinal to the NLS may unmask such cryptic NLS, rendering the kinase amenable to nuclear import. If the four amino acids of the hexapeptide are arginines and lysines whose pK_a is 9.5 to 12.5, it will be harder to be burried or hidden in the protein structure unless brought into electrostatic interaction with a complementary segment containing four aspartic, glutamic, or phosphoserine/phosphothreonine/phosphotyrosine residues within a cleft of the protein.

Evidently, proteins possessing functional NLS may remain strictly cytoplasmic if strongly associating with large cytoplasmic protein complexes or structures like filaments, cell membrane, or endoplasmic reticulum membrane proteins [Boulikas, 1994a].

Mechanisms of Protein Transportation

It has been proposed [Boulikas, 1993] 1) that the anchoring of the protein to be transported to the nucleus to the transporter protein vehicle is electrostatic and 2) that not only karyophilic but also acidic amino acid clusters on the protein molecule to be imported contribute to its binding to the transporter proteins; this is justified from presence of $(K/R)_4$ as well as $\mathbf{Rx}_3\mathbf{Rx}_4\mathbf{Rx}_3$ $\mathbf{Rx}_3\mathbf{Rx}_4\mathbf{Rx}_3\mathbf{Rx}_2\mathbf{Rx}_3\mathbf{R}$ type of motifs displaying a positive charge to the same side of the α -helix on the small number of transporter proteins whose primary structure is known [Lee et al., 1991; Meier and Blobel, 1992]. Thus, electrostatic binding might be disrupted either in the higher ionic milieu of the nucleoplasm [Mazzanti et al., 1990] or by competition by RNA molecules for binding to the same transporter protein molecule for their export to the cytoplasm. In this model the transporter protein molecules shuttle between the nucleus and the cytoplasm through the pore complexes of the nuclear envelope and are used not only for nuclear protein import but also for RNA export.

ACKNOWLEDGMENTS

Special gratitude is given to Emile Zuckerkandl for support and helpful comments and to Dawn Brooks and John Costouros for help in preparing the manuscript.

REFERENCES

- Ahn NG, Seger R, Bratlien RL, Diltz CD, Tonks NK, Krebs EG (1991): Multiple components in an epidermal growth factor-stimulated protein kinase cascade. In vitro activation of a myelin basic protein/microtubule-associated protein 2 kinase. J Biol Chem 266:4220–4227.
- Alcorta DA, Crews CM, Sweet LJ, Bankston L, Jones SW, Erikson RL (1989): Sequence and expression of chicken and mouse *rsk*: homologs of *Xenopus laevis* ribosomal S6 kinase. Mol Cell Biol 9:3850–3859.
- Anderson NG, Maller JL, Tonks NK, Sturgill TW (1990): Requirement for integration of signals from two distinct phosphorylation pathways for activation of MAP kinase. Nature 343:651-653.
- Beck TW, Huleihel M, Gunnell M, Blonner TI, Rapp UR (1987): The complete coding sequence of the human Araf-1 oncogene and transforming activity of a human A-raf carrying retrovirus. Nucleic Acids Res 15:595–609.
- Bennett MK, Kennedy MB (1987): Deduced primary structure of the β subunit of brain type II Ca²⁺ calmodulindependent protein kinase determined by molecular cloning. Proc Natl Acad Sci U S A 84:1794–1798.
- Bonner TI, Oppermann H, Seeburg P, Kerby SB, Gunnell MA, Young AC, Rapp UR (1986): The complete coding sequence of the human *raf* oncogene and the corresponding structure of the c-*raf*-1 gene. Nucleic Acids Res 14: 1009–1015.
- Boulikas T (1993): Nuclear localization signals (NLS). Crit Rev Eukar Gene Expression 3:193–227.
- Boulikas T (1994a): Putative nuclear localization signals (NLS) in protein transcription factors. J Cell Biochem 55:32–58.
- Boulikas T (1994b): A compilation and classification of DNA binding sites for protein transcription factors from vertebrates. Crit Rev Euk Gene Expression 4:137–321.
- Boulikas T (1995): Phosphorylation of transcription factors and the control of the cell cycle. Eakar Gene Expression (In press).
- Boulton TG, Yancopoulos GD, Gregory JS, Slaughter C, Moomaw C, Hsu J, Cobb MH (1990): An insulin-stimulated protein kinase similar to yeast kinases involved in cell cycle control. Science 249:64-67.
- Boyle WJ, Smeal T, Defize LHK, Angel P, Woodgett JR, Karin M, Hunter T (1991): Activation of protein kinase C decreases phosphorylation of c-Jun at sites that negatively regulate its DNA-binding activity. Cell 64:573–584.

- Breeden L, Nasmyth K (1987): Similarity between cell-cycle genes of budding yeast and fission yeast and the Notch gene of Drosophila. Nature 329:651–654.
- Cannon JF, Tatchell K (1987): Characterization of Saccharomyces cerevisiae genes encoding subunits of cyclic AMPdependent protein kinase. Mol Cell Biol 7:2653–2663.
- Celenza JL, Carlson M (1986): A yeast gene that is essential for release from glucose repression encodes a protein kinase. Science 233:1175–1180.
- Chamberlain JS, Van Tuinen P, Reeves AA, Philip BA, Caskey CT (1987): Isolation of cDNA clones for the catalytic γ -subunit of mouse muscle phosphorylase kinase: expression of mRNA in normal and mutant *Phk* mice. Proc Natl Acad Sci U S A 84:2886–2890.
- Chan AM-L, King HWS, Tempest PR, Deakin EA, Cooper CS, Brookes P (1987): Primary structure of the *met* protein tyrosine kinase domain. Oncogene 1:229–233.
- Chen R-H, Sarnecki C, Blenis J (1992): Nuclear localization and regulation of *erk-* and *rsk-*encoded protein kinases. Mol Cell Biol 12:915–927.
- Cherry JR, Johnson TR, Dollard C, Shuster JR, Denis CL (1989): Cyclic AMP-dependent protein kinase phosphorylates and inactivates the yeast transcriptional activator ADR1. Cell 56:409-419.
- Cohen PTW, Brewis ND, Hughes V, Mann DJ (1990): Protein serine/threonine phosphatases; an expanding family. FEBS Lett 268:355-359.
- Coussens L, Parker PJ, Rhee L, Yang-Feng TL, Chen E, Waterfield MD, Francke U, Ullrich A (1986a): Multiple, distinct forms of bovine and human protein kinase C suggest diversity in cellular signalling pathways. Science 233:859-866.
- Coussens L, Van Beveren C, Smith D, Chen E, Mitchell RL, Isacke CM, Verma IM, Ullrich A (1986b): Structural alteration of viral homologue of receptor proto-oncogene fms at carboxyl terminus. Nature 320:277–280.
- Ebina Y, Ellis L, Jarnagin K, Edery M, Graf L, Clauser E, Ou J-h, Masiarz F, Kan YW, Goldfine ID, Roth RA, Rutter WJ (1985): The human insulin receptor cDNA: the structural basis for hormone-activated transmembrane signalling. Cell 40:747-758.
- Edelman AM, Blumenthal DK, Krebs EG (1987): Protein serine-threonine kinases. Annu Rev Biochem 56:567-614.
- Fu XY, Zhang JJ (1993): Transcription factor p91 interacts with the epidermal growth factor receptor and mediates activation of the c-fos gene promoter. Cell 74:1135–1145.
- Fu XY (1992): A transcription factor with SH2 and SH3 domains is directly activated by an interferon α -induced cytoplasmic protein tyrosine kinase(s). Cell 70:323–335.
- Glass DB, Krebs EG (1979): Comparison of the substrate specificity of adenosine 3':5'-monophosphate- and guanosine 3':5'-monophosphate-dependent protein kinases. J Biol Chem 254:9728-9738.
- Guerriero V, Russo MA, Olson NJ, Putkey JA, Means AR (1986): Domain organization of chicken gizzard myosin light chain kinase deduced from a cloned cDNA. Biochemistry 25:8372–8381.
- Hadwiger JA, Wittenberg C, Richardson HE, Lopes MDB, Reed SI (1989): A family of cyclin homologs that control the G₁ phase in yeast. Proc Natl Acad Sci U S A 86:6255– 6259.
- Hemmings BA, Yellowlees D, Kernohan JC, Cohen P (1982): Purification of glycogene synthase kinase 3 from rabbit skeletal muscle: copurification with the activating factor

 $(F_{\rm A})$ of the (Mg-ATP) dependent protein phosphatase. Eur J Biochem 119:443–451.

- Hindley J, Phear GA (1984): Sequence of the cell division gene CDC2 from *Schizosaccharomyces pombe*; patterns of splicing and homology to protein kinases. Gene 31:129-134.
- Huleihel M, Goldsborough M, Cleveland J, Gunnell M, Bonner T, Rapp UR (1986): Characterization of murine A-raf, a new oncogene related to the v-raf oncogene. Mol Cell Biol 6:2655–2662.
- Hunter T, Karin M (1992): The regulation of transcription by phosphorylation. Cell 70:375–387.
- Janknecht R, Hipskind RA, Houthaeve T, Nordheim A, Stunnenberg HG (1992): Identification of multiple SRF N-terminal phosphorylation sites affecting DNA binding properties. EMBO J 11:1045-1054.
- Jones SW, Erikson E, Blenis J, Maller JL, Erikson RL (1988): A Xenopus ribosomal protein S6 kinase has two apparent kinase domains that are each similar to distinct protein kinases. Proc Natl Acad Sci U S A 85:3377–3381.
- Knopf JL, Lee M-H, Sultzman LA, Kriz RW, Loomis CR, Hewick RM, Bell RB (1986): Cloning and expression of multiple protein kinase C cDNAs. Cell 46:491–502.
- Koch CA, Anderson D, Moran MF, Ellis C, Pawson T (1991): SH2 and SH3 domains: elements that control interactions of cytoplasmic signalling proteins. Science 252:668–674.
- Koff A, Cross F, Fisher A, Shumacher J, Leguellec K, Philippe M, Roberts JM (1991): Human cyclin E, a new cyclin that interacts with two members of the *CDC2* gene family. Cell 66:1217–1228.
- Krek W, Maridor G, Nigg EA (1992): Casein kinase II is a predominantly nuclear enzyme. J Cell Biol 116:43–55.
- Kyriakis JM, App H, Zhang X, Banerjee P, Brautigan DL, Rapp UR, Avruch J (1992): Raf-1 activates MAP kinasekinase. Nature 358:417–421.
- Leach KL, Powers EA, Ruff VA, Jaken S, Kaufmann S (1989): Type 3 protein kinase C localization to the nuclear envelope of phorbol ester-treated NIH 3T3 cells. J Cell Biol 109:685-695.
- Lee JM, Greenleaf AL (1991): CTD kinase large subunit is encoded by *CTK1*, a gene required for normal growth of Saccharomyces cerevisiae. Gene Expression 1:149–167.
- Lee MG, Nurse P (1987): Complementation used to clone a human homologue of the fission yeast cell cycle control gene *cdc2*. Nature 327:31–35.
- Lee W-C, Xue Z, Mélèse T (1991): The NSR1 gene encodes a protein that specifically binds nuclear localization sequences and has two RNA recognition motifs. J Cell Biol 113:1–12.
- Lehner CF, O'Farrel PH (1989): Expression and function of *Drosophila* cyclin A during embryonic cell cycle development. Cell 56:957–968.
- Levin DE, Hammond CI, Ralston RO, Bishop JM (1987): Two yeast genes that encode unusual protein kinases. Proc Natl Acad Sci 84:6035–6039.
- Lin A, Frost J, Deng T, Smeal T, Al-Alawi N, Kikkawa U, Hunter T, Brenner D, Karin M (1992): Casein kinase II is a negative regulator of c-Jun DNA binding and APactivity. Cell 70:777–789.
- Lin CR, Kapiloff MS, Durgerian S, Tatemoto K, Russo A, Hanson P, Schulman H, Rosenfeld MG (1987): Molecular cloning of a brain-specific calcium/calmodulin-dependent protein kinase. Proc Natl Acad Sci U S A 84:5962–5966.
- Lisziewicz J, Godany A, Forster HH, Kuntzel H (1986): Isolation and nucleotide sequences of a Saccharomyces

cerevisiae protein kinase gene suppressing the cell cycle start mutation cdc25. J Biol Chem 262:2549–2553.

- Lörincz AT, Reed SI (1984): Primary structure homology between the product of yeast cell division control gene *CDC28* and vertebrate oncogenes. Nature 307:183-185.
- Mark GE, Rapp UR (1984): Primary structure of v-*raf:* relatedness to the *src* family of oncogenes. Science 224: 285–289.
- Mark GE, Seeley TW, Shows TB, Mountz JD (1986): *pks*, a *raf*-related sequence in humans. Proc Natl Acad Sci U S A 83:6312–6316.
- Martinage A, Mangeat P, Laine B, Couppez M, Sautiere P, Marchis-Mouren G, Biserte G (1980): In vitro phosphorylation of histones H5, H2A, H2B and of the dimer H2A-H2B by a cyclic AMP-dependent protein kinase from rat pancreas. FEBS Lett 118:323–329.
- Matsushime H, Wang LH, Shibuya M (1986): Human cros-1 gene homologous to the v-ros sequence of UR2 sarcoma virus encodes for a transmembrane receptorlike molecule. Mol Cell Biol 6:3000–3004.
- Mazzanti M, DeFelice LJ, Cohen J, Malter H (1990): Ion channels in the nuclear envelope. Nature 343:764-767.
- Meier UT, Blobel G (1992): Nopp140 shuttles on tracks between nucleolus and cytoplasm. Cell 70:127-138.
- Metz R, Ziff E (1991): cAMP stimulates the C/EBP-related transcription factor rNFIL-6 to *trans*-locate to the nucleus and induce c-*fos* transcription. Genes Dev 5:1754–1766.
- Meyerson M, Enders GH, Wu C-L, Su L-K, Gorka C, Nelson C, Harlow E, Tsai L-H (1992): A family of human cdc2related protein kinases. EMBO J 11:2909–2917.
- Mudryj M, Devoto SH, Hiebert SW, Hunter T, Pines J, Nevins JR (1991): Cell cycle regulation of the E2F transcription factor involves an interaction with cyclin A. Cell 65:1243-1253.
- Minshull J, Blow JJ, Hunt T (1989): Translation of cyclin mRNA is necessary for extracts of activated Xenopus eggs to enter mitosis. Cell 56:947–956.
- Nigg EA, Hitz H, Eppenberger HM, Dutly F (1985): Rapid and reversible translocation of the catalytic subunit of cAMP-dependent protein kinase type II from the Golgi complex to the nucleus. EMBO J 4:2801–2806.
- Ninomiya-Tsuji J, Nomoto S, Yasuda H, Reed SI, Matsumoto K (1991): Cloning of a human cDNA encoding a CDC2-related kinase by complementation of a budding yeast cdc28 mutation. Proc Natl Acad Sci U S A 88:9006– 9010.
- Ohno S, Kawasaki H, Imajoh S, Suzuki K, Inagaki M, Yokokura H, Sakoh T, Hidaka H (1987): Tissue-specific expression of three distinct types of rabbit protein kinase C. Nature 325:161–166.
- Paris J, Le Guellec R, Couturier A, Le Guellec K, Omilli F, Camonis J, MacNeil S, Philippe M (1991): Cloning by differential screening of a *Xenopus* cDNA coding for a protein highly homologous to cdc2. Proc Natl Acad Sci U S A 88:1039-1043.
- Park M, Dean M, Kaul K, Braun MJ, Gonda MA, Vande Woude G (1987): Sequence of MET protooncogene cDNA has features characteristic of the tyrosine kinase family of growth-factor receptors. Proc Natl Acad Sci U S A 84:6379– 6383.
- Parker PJ, Coussens L, Totty N, Rhee L, Young S, Chen E, Stabel S, Waterfield MD, Ullrich A (1986): The complete primary structure of protein kinase C—the major phorbol ester receptor. Science 233:853–859.

- Patterson M, Sclafani RA, Fangman WL, Rosamond J (1986): Molecular characterization of cell cycle gene CDC7 from Saccaromyces cerevisiae. Mol Cel Biol 6:1590–1598.
- Pines J, Hunter T (1989): Isolation of a human cyclin cDNA: evidence for cyclin mRNA and protein regulation in the cell cycle and for interaction with p34^{cdc2}. Cell 58:833– 846.
- Posada J, Sanghera J, Pelech S, Aebersold R, Cooper JA (1991): Tyrosine phosphorylation and activation of homologous protein kinases during oocyte maturation and mitogenic activation of fibroblasts. Mol Cell Biol 11:2517– 2528.
- Reimann EM, Titani K, Ericsson LH, Wade RD, Fischer EH, Walsh KA (1984): Homology of the γ subunit of phosphorylase b kinase with cAMP-dependent protein kinase. Biochemistry 23:4185–4192.
- Rosenthal A, Rhee L, Yadegari R, Paro R, Ullrich A, Goeddel DV (1987): Structure and nucleotide sequence of a *Dro-sophila melanogaster* protein kinase C gene. EMBO J 6:433–441.
- Russell P, Nurse P (1987): Negative regulation of mitosis by wee 1^+ , a gene encoding a protein kinase homolog. Cell 49:559–567.
- Saxena A, Padmanabha R, Glover CVC (1987): Isolation and sequencing of cDNA clones encoding alpha and beta subunits of *Drosophila melanogaster* casein kinase II. Mol Cell Biol 7:3409–3417.
- Sheng M, McFadden G, Greenberg ME (1990): Membrane depolarization and calcium induce c-fos transcription via phosphorylation of transcription factor CREB. Neuron 4: 571–582.
- Sheng M, Thompson MA, Greenberg, ME (1991) CREB: a Ca²⁺-regulated transcription factor phosphorylated by calmodulin-dependent kinases. Science 252:1427–1430.
- Shoji S, Parmelee DC, Wade RD, Kumar S, Ericsson LH, Walsh KA, Neurath H, Long GL, DeMaille JG, Fischer EH, Titani K (1981): Complete amino acid sequence of the catalytic subunit of bovine cardiac muscle cyclic AMPdependent protein kinase. Proc Natl Acad Sci U S A 78:848-851.
- Showers MO, Maurer RA (1986): A cloned bovine cDNA encodes an alternate form of the cayalytic subunit of cAMP-dependent protein kinase. J Biol Chem 261:16288– 16291.
- Shtivelman E, Lifshitz B, Gale RP, Roe BA, Canaani E (1986): Alternative splicing of RNAs transcribed from the human *abl* gene and from the *bcr-abl* fused gene. Cell 47:277–284.
- Shuai KE, Ziemicki A, Wilks AF, Harpur AG, Sadowski HB, Gilman MZ, Darnell JE (1993): Polypeptide signalling to the nucleus through tyrosine phosphorylation of Jak and Stat proteins. Nature 366:580-583.
- Siegfried E, Perkins LA, Capaci TM, Perrimon N (1990): Putative protein kinase product of the *Drosophila* segmentpolarity gene *zeste-white 3*. Nature 345:825–829.
- Simon M, Seraphin B, Faye G (1986): KIN28, a yeast split gene coding for a putative protein kinase homologous to CDC28. EMBO J 5:2697–2701.
- Sukegawa J, Semba K, Yamanashi Y, Nishizawa M, Miyajima N, Yamamoto T, Toyoshima K (1987): Characterization of cDNA clones for the human c-yes gene. Mol Cell Biol 7:41-47.
- Swenson KI, Farrell KM, Ruderman JV (1986): The clam embryo protein cyclin A induces entry into M phase and

the resumption of meiosis in Xenopus oocytes. Cell 47:861– 870.

- Takahashi M, Cooper GM (1987): *ret* transforming gene encodes a fusion protein homologous to tyrosine kinases. Mol Cell Biol 7:1378–1385.
- Takeya T, Hanafusa H (1983): Structure and sequence of the cellular gene homologous to the RSV src gene and the mechanism for generating the transforming virus. Cell 32:881-890.
- Takio K, Blumenthal DK, Edelman AM, Walsh KA, Krebs EG, Titani K (1985): Amino acid sequence of an active fragment of rabbit skeletal muscle myosin light chain kinase. Biochemistry 24:6028-6037.
- Takio K, Kuenzel EA, Walsh KA, Krebs EG (1987): Amino acid sequence of the β subunit of bovine lung casein kinase II. Proc Natl Acad Sci U S A 84:4851–4855.
- Takio K, Wade RD, Smith SB, Krebs EG, Walsh KA, Titani K (1984): Guanosine cyclic 3',5'-phosphate dependent protein kinase, a chimeric protein homologous with two separate protein families. Biochemistry 23:4207-4218.
- Tamura S, Lynch KR, Larner J, Fox J, Yasui A, Kikuchi K, Suzuki Y, Tsuiki S (1989): Molecular cloning of rat type 2C (IA) protein phosphatase mRNA. Proc Natl Acad Sci U S A 86:1796–1800.
- Teague MA, Chaleff DT, Errede B (1986): Nucleotide sequence of the yeast regulatory gene *STE7* predicts a protein homologous to protein kinases. Proc Natl Acad Sci U S A 83:7371–7375.
- Toda T, Cameron S, Sass P, Zoller M, Wigler M (1987): Three different genes in S. cerevisiae encode the catalytic subunits of the cAMP-dependent protein kinase. Cell 50: 277–287.
- Tratner I, Ofir R, Verma IM (1992): Alteration of a cyclic AMP-dependent protein kinase phosphorylation site in c-Fos protein augments its transforming potential. Mol Cell Biol 12:998-1006.
- Tsai L-H, Harlow E, Meyerson M (1991): Isolation of the human cdk2 gene that encodes the cyclin A- and adenovirus E1A-associated p33 kinase. Nature 353:174–177.
- Uhler MD, Carmichael DF, Lee DC, Chrivia JC, Krebs EG, McKnight GS (1986a): Isolation of cDNA clones coding for the catalytic subunit of mouse cAMP-dependent protein kinase. Proc Natl Acad Sci U S A 83:1300–1304.
- Uhler MD, Chrivia JC, McKnight GS (1986b): Evidence for a second isoform of the catalytic subunit of cAMP-dependent protein kinase. J Biol Chem 261:15360–15363.
- Ullrich A, Bell JR, Chen EY, Herrera R, Petruzzelli LM, Dull TJ, Gray A, Coussens L, Liao Y-C, Tsubokawa M, Mason A, Seeburg PH, Grunfeld C, Rosen OM, Ramachandran J

(1985): Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes. Nature 313:756–761.

- Ullrich A, Cousens L, Hayflick JS, Dull TJ, Gray A, Tam AW, Lee J, Yarden Y, Libermann TA, Schlessinger J, Downward J, Mayes ELV, Whittle N, Waterfeld MD, Seeburg PH (1984): Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. Nature 309:418– 425.
- van Beveren C, van Straaten F, Galleshaw JA, Verma IM (1981a): Nucleotide sequence of the genome of a murine sarcoma virus. Cell 27:97–108.
- van Beveren C, Galleshaw JA, Jonas V, Berns AJM, Doolittle RF, Donoghue DJ, Verma IM (1981b): Nucleotide sequence and formation of the transforming gene of a mouse sarcoma virus. Nature 289:258–262.
- van der Hoorn FA, Firzlaff J (1984): Complete c-mos (rat) nucleotide sequence: presence of conserved 2 domains in c-mos proteins. Nucleic Acids Res 12:2147-2156.
- Velazquez L, Fellous M, Stark GR, Pellegrini S (1992): A protein tyrosine kinase in the interferon α/β signaling pathway. Cell 70:313-322.
- Voronova AF, Sefton BM (1986): Expression of a new tyrosine protein kinase is stimulated by retrovirus promoter insertion. Nature 319:682-685.
- Wang J, Chenivesse X, Henglein B, Bréchot C (1990): Hepatitis B virus integration in a cyclin A gene in a hepatocellular carcinoma. Nature 343:555–557.
- Watson R, Oskarsson M, Vande Woude GF (1982): Human DNA sequence homologous to the transforming gene (mos) of Moloney murine sarcoma virus. Proc Natl Acad Sci U S A 79:4078–4082.
- Woodgett JR (1990): Molecular cloning and expression of glycogen synthase kinase-3/factor A. EMBO J 9:2431-2438.
- Woodgett JR (1991): A common denominator linking glycogen metabolism, nuclear oncogenes and development. Trends Biol Sci 16:177-181.
- Xiong Y, Connolly T, Futcher B, Beach D (1991): Human D-type cyclin. Cell 65:691–699.
- Yamanishi Y, Fukusige S-I, Semba K, Sukegawa J, Miyajima N, Matsubara K-I, Yamamoto T, Toyoshima K (1987): The yes-related cellular gene lyn encodes a possible tyrosine kinase similar to p56^{lck}. Mol Cell Biol 7:237-243.
- Yarden Y, Kuang W-J, Yang-Feng T, Coussens L, Munemitsu S, Dull TJ, Chen E, Schlessinger J, Francke U, Ullrich A (1987): Human proto-oncogene *c-kit*: a new cell surface receptor tyrosine kinase for an unidentified region. EMBO J 6:3341–3351.